
Design and Analysis of Algorithm
Divide and Conquer (I)

1 Introduction of Divide-and-Conquer

2 QuickSort

3 Chip Test

4 Selection Problem
Selecting Max and Min
Selecting the Second Largest
General Selection Problem

5 Closest Pair of Points

1 / 100

Outline

1 Introduction of Divide-and-Conquer

2 QuickSort

3 Chip Test

4 Selection Problem
Selecting Max and Min
Selecting the Second Largest
General Selection Problem

5 Closest Pair of Points

2 / 100

Divide-and-Conquer Paradigm

Divide-and-Conquer strategy solves a problem by:

1 Divide: break original problem into several subproblems with
smaller size that can be solved independently

2 Conquer: recursively or iteratively solving these subproblems
when the subproblems are so small, they are solved outright

3 Combine: compose solutions to subproblems into overall
solution

coordinated by the algorithm’s core recursive structure

3 / 100

Divide-and-Conquer Paradigm

Divide-and-Conquer strategy solves a problem by:

1 Divide: break original problem into several subproblems with
smaller size that can be solved independently

2 Conquer: recursively or iteratively solving these subproblems
when the subproblems are so small, they are solved outright

3 Combine: compose solutions to subproblems into overall
solution

coordinated by the algorithm’s core recursive structure

3 / 100

Divide-and-Conquer Paradigm

Divide-and-Conquer strategy solves a problem by:

1 Divide: break original problem into several subproblems with
smaller size that can be solved independently

2 Conquer: recursively or iteratively solving these subproblems
when the subproblems are so small, they are solved outright

3 Combine: compose solutions to subproblems into overall
solution

coordinated by the algorithm’s core recursive structure

3 / 100

Divide-and-Conquer Paradigm

Divide-and-Conquer strategy solves a problem by:

1 Divide: break original problem into several subproblems with
smaller size that can be solved independently

2 Conquer: recursively or iteratively solving these subproblems
when the subproblems are so small, they are solved outright

3 Combine: compose solutions to subproblems into overall
solution

coordinated by the algorithm’s core recursive structure

3 / 100

Why Divide-and-Conquer

Not always, but usually performs better than brute-force algorithm

Most common usage (Example)
Divide problem of size n into two subproblems of size n/2 in
linear time
Solve two subproblems recursively
Combine two solutions into overall solution in linear time

Brute force: Θ(n2) vs. Divide-and-conquer: Θ(n logn)

particularly applicable in parallel computing environment (will be
more efficient)

4 / 100

Why Divide-and-Conquer

Not always, but usually performs better than brute-force algorithm
Most common usage (Example)

Divide problem of size n into two subproblems of size n/2 in
linear time
Solve two subproblems recursively
Combine two solutions into overall solution in linear time

Brute force: Θ(n2) vs. Divide-and-conquer: Θ(n logn)

particularly applicable in parallel computing environment (will be
more efficient)

4 / 100

Why Divide-and-Conquer

Not always, but usually performs better than brute-force algorithm
Most common usage (Example)

Divide problem of size n into two subproblems of size n/2 in
linear time
Solve two subproblems recursively
Combine two solutions into overall solution in linear time

Brute force: Θ(n2) vs. Divide-and-conquer: Θ(n logn)

particularly applicable in parallel computing environment (will be
more efficient)

4 / 100

Why Divide-and-Conquer

Not always, but usually performs better than brute-force algorithm
Most common usage (Example)

Divide problem of size n into two subproblems of size n/2 in
linear time
Solve two subproblems recursively
Combine two solutions into overall solution in linear time

Brute force: Θ(n2) vs. Divide-and-conquer: Θ(n logn)

particularly applicable in parallel computing environment (will be
more efficient)

4 / 100

Origin of Divide-and-Conquer: Western

Divide and rule (Latin: divide et impera), or divide and conquer, in
politics and sociology is gaining and maintaining power by breaking
up larger concentrations of power into pieces that individually have
less power than the one implementing the strategy.

The maxim divide et impera has been attributed to Philip II of
Macedon. It was utilised by the Roman ruler Julius Caesar
and the French emperor Napoleon.

5 / 100

Origin of Divide-and-Conquer: Eastern

故用兵之法, 十则围之, 五则攻之, 倍则战之, 敌则能分之, . . .
—《孙子兵法》

Figure: 秦王扫六合时, 虎视何雄哉

6 / 100

General Divide-and-Conquer Algorithm

Algorithm 1: Divide-and-Conquer(P)

1: if |P | ≤ s∗ then Solve(P); // direct solve
2: else divide P into P1, P2, . . . , Pk; // divide
3: for i← 1 to k do
4: yi ← Divide-and-Conquer(Pi) // solve subproblems
5: end
6: return Merge(y1, y2, . . . , yk) // combine answers

7 / 100

Complexity of Divide-and-Conquer

Recurrence relation:{
T (n) = T (|P1|) + T (|P2|) + · · ·+ T (|Pk|) + f(n)

T (s∗) = C

P1, P2, . . . , Pk are subproblems after dividing
f(n) is the complexity of dividing subproblems and combining
answers of subproblems to answer to the original problem
C is the complexity of the smallest subproblem of size s∗

Next, we introduce two canonical types of recurrence relations.

8 / 100

Case 1: Subproblems Reduce Size by a Constant

T (n) =

k∑
i=1

aiT (n− i) + f(n)

Solving method
1 Iteration (direct iteration or simplify-then-iteration)
2 Recursive tree

Example. Hanoi tower: T (n) = 2T (n− 1) + 1

9 / 100

Case 2: Subproblems Reduce Size Linearly

T (n) = aT
(n
b

)
+ f(n), h(n) = nlogb a

Solving method: recursion tree, master theorem

T (n) =

Θ(h(n)) if f(n) = o(h(n))

Θ(h(n) logn) if f(n) = Θ(h(n))

Θ(f(n)) if f(n) = ω(h(n))

∧∃ r < 1 s.t. af(n/b) < rf(n)

Example 1. Binary search: W (n) = W (n/2) + 1

Example 2. Merge sort: W (n) = 2W (n/2) + (n− 1)

10 / 100

In this section, we illustrate the main idea of divide-and-conquer by
several introductory examples.

11 / 100

Hanoi Tower

Algorithm 2: Hanoi(A,C, n) // n disk from A to C

Input: A(n), B(0), C(0)
Output: A(0), B(0), C(n)

1: if n = 1 then move (A,C); //one disk from A to C
2: else
3: Hanoi(A,B, n− 1);
4: move (A,C);
5: Hanoi(B,C, n− 1)

6: end

12 / 100

Complexity of Hanoi Tower

1 Reduce the original problem to two subproblem of size n− 1

2 Continue to reduce until the size of subproblem is 1

3 From input size 1 to n− 1, combine the answers until the size
go back to n.

Let T (n) be the complexity of moving n disks: the minimum
number of moves required

T (n) = 2T (n− 1) + 1
T (1) = 1

}
⇒ T (n) = 2n − 1

There is no worst-case, best-case, average-case distinctions for
this problem, since the input only depend on the input size.

13 / 100

Binary Search

Algorithm 3: BinarySearch(A, l, r, x)
Input: sorted A[l, r] in ascending order, target x
Output: j // if x ∈ T , j is the index, else j = 0

1: if l = r then //the smallest subproblem
2: if x = A[l] then return l;
3: else return 0;
4: end
5: m← ⌊(l + r)/2⌋ // m is the middle position;
6: if x ≤ A[m] then //compare to median
7: BinarySearch(A, l,m, x)
8: end
9: else

10: BinarySearch(A,m+ 1, r, x)
11: end

14 / 100

Complexity of Binary Search

1 Reduce the original problem to a subproblem with half size by
comparing x with the median:

if x ≤ A[m], then A[l, r] := A[l,m], else A[l, r] := A[m+ 1, r]

2 Repeatedly search T until its size becomes 1, i.e. l = r

At this point, directly compare x and A[l], return l if equal and
“0” otherwise.

Worst-case complexity of binary search

h(n) = 1, f(n) = Θ(h(n)) ⇒ master theorem (case 2)

W (n) = W (⌈n/2⌉) + 1
W (1) = 1

}
⇒W (n) = Θ(logn)

15 / 100

Example of MergeSort

Algorithm 4: MergeSort(A,n)
Input: unsorted A[n]
Output: sorted A[n] in ascending order

1: l← 1, r ← n;
2: if l < r then
3: m← ⌊(l + r)/2⌋ //partition by half;
4: MergeSort(A, l,m) // subproblem 1;
5: MergeSort(A,m+ 1, r) // subproblem 2;
6: Merge(A[l,m], A[m+ 1, r]) // merge sorted sub-array
7: end

How to implement Merge recursively?

16 / 100

Recursive Merge Algorithm

Algorithm 5: Merge(A[1, k], B[1, l])

1: if k = 0 then return B[1, l];
2: if l = 0 then return A[1, k];
3: if A[1] ≤ B[1] then return A[1] ◦Merge(A[2, k], B[1, l]);
4: else return B[1] ◦Merge(A[1, k], B[2, l]);

The Merge procedure does a constant amount of work per
recursive call, for a total running time of O(k + l).

17 / 100

Complexity of MergeSort

1 Partition the original problem to 2 subproblem of size n/2

2 Continue the partition step until the size of subproblem is 1
3 From input size 1 to n/2, merge two neighbored sorted

sub-array.
The size of sub-array doubles after each merge, until reach the
original size.

Assume n = 2k, the worse-case complexity of MergeSort is:

h(n) = n, f(n) = Θ(h(n)) ⇒ master theorem (case 2)

W (n) = 2W (n/2) + n− 1
W (1) = 0

}
⇒W (n) = Θ(n logn)

18 / 100

Recap of MergeSort

The dividing of subproblems is already done thanks to data
structure of array, all the real work need to be done is merging.

This viewpoint suggests MergeSort can be made iterative from
singleton arrays to the original array in the bottom-up flavor.

10 2 5 3 7 13 1 6Input:

10 2

2 10

5 3

3 5

7 13

7 13

1 6

1 6

2 3 5 10 1 6 7 13

1 2 3 5 6 7 10 13

19 / 100

Recap of MergeSort

The dividing of subproblems is already done thanks to data
structure of array, all the real work need to be done is merging.
This viewpoint suggests MergeSort can be made iterative from
singleton arrays to the original array in the bottom-up flavor.

10 2 5 3 7 13 1 6Input:

10 2

2 10

5 3

3 5

7 13

7 13

1 6

1 6

2 3 5 10 1 6 7 13

1 2 3 5 6 7 10 13

19 / 100

Recap of MergeSort

The dividing of subproblems is already done thanks to data
structure of array, all the real work need to be done is merging.
This viewpoint suggests MergeSort can be made iterative from
singleton arrays to the original array in the bottom-up flavor.

10 2 5 3 7 13 1 6Input:

10 2

2 10

5 3

3 5

7 13

7 13

1 6

1 6

2 3 5 10 1 6 7 13

1 2 3 5 6 7 10 13

19 / 100

Recap

We exemplify the features of divide-and-conquer algorithm:

Divide the original problem to independent subproblems with
smaller size

the subproblem and the original problem are of the same type
when the subproblems are sufficiently small, they can be solved
outright

The algorithm can be solved recursively or iteratively

Complexity analysis: solving recurrence relation

20 / 100

Outline

1 Introduction of Divide-and-Conquer

2 QuickSort

3 Chip Test

4 Selection Problem
Selecting Max and Min
Selecting the Second Largest
General Selection Problem

5 Closest Pair of Points

21 / 100

Basic Idea

1 Choose the first element x as pivot, partition A into two
sub-array:

low sub-array AL: elements less than x
high sub-array AR: elements greater than x
x is at the right position

2 recursively sort AL and AR, until the size of sub-array is 1

22 / 100

Pseudocode of QuickSort

Algorithm 6: QuickSort(A, l, r)
Input: A[l . . . r]
Output: sorted A in ascending order

1: if l = r then return; //reach the smallest case
2: if l < r then
3: k ← Partition(A, l, r);
4: A[l]↔ A[k];
5: QuickSort(A, l, k − 1);
6: QuickSort(A, k + 1, r);
7: end

23 / 100

Pseudocode of Partition

Algorithm 7: Partition(A, l, r)
1: x← A[l] //set the first element as pivot;
2: i← l, j ← r + 1 //initialize left/right pointer;
3: while true do
4: repeat j ← j − 1 until A[j] ≤ x; //less than x
5: repeat i← i+ 1 until A[i] > x; //greater than x
6: if i < j then A[i]↔ A[j];
7: else return j; //cross happen, find the position
8: end

24 / 100

Demo of Partition

27 99 0 8 13 64 86 16 7 10 88 25 90

i j

27 25 0 8 13 64 86 16 7 10 88 99 90

i j

27 25 0 8 13 10 86 16 7 64 88 99 90

i j

27 25 0 8 13 10 7 16 86 64 88 99 90

i j

16 25 0 8 13 10 7 27 86 64 88 99 90

25 / 100

Complexity Analysis

Worst-case:

W (n) = W (n− 1) + n− 1
W (1) = 0

}
⇒W (n) = n(n− 1)/2

Best-case:

T (n) = 2T (n/2) + n− 1
T (1) = 0

}
⇒ T (n) = Θ(n logn)

26 / 100

Complexity of Constant Partition

Constant Partition. The ratio of subproblems vs. original problem
is a fixed constant, such as 1 : 9.{

T (n) = T (n/10) + T (9n/10) + n
T (1) = 0

Solving via recursion tree ⇒ T (n) = Θ(n logn)

27 / 100

Recursion Tree

n

n

n

n

O(n)

n

n
10

9n
10

n
100

9n
100

9n
100

81n
100

81n
1000

729n
1000

. . .

T (n) = Θ(n logn)

28 / 100

Average-Case Complexity

Suppose the first element finally appear at position 1, 2, . . . , n with
equal probability, i.e., 1/n. We analyze the size of resulting
subproblems

appear at position 1: T (0), T (n− 1)

appear at position 2: T (1), T (n− 2)

. . .

appear at position n− 1: T (n− 2), T (1)
appear at position n: T (n− 1), T (0)

The cost of all subproblems: 2(T (1) + T (2) + · · ·+ T (n− 1))

The cost of partition: n− 1 compares

29 / 100

Average-Case Complexity

T (n) =
1

n

n−1∑
k=1

(T (k) + T (n− k)) + n− 1

T (n) =
2

n

n−1∑
k=1

T (k) + n− 1

T (1) = 0

We simplify the recurrence relation via subtraction ⇒

T (n) = Θ(n logn)

See pp. 47 on Lec 3 if you cannot remember it.

30 / 100

Outline

1 Introduction of Divide-and-Conquer

2 QuickSort

3 Chip Test

4 Selection Problem
Selecting Max and Min
Selecting the Second Largest
General Selection Problem

5 Closest Pair of Points

31 / 100

Chip Test

Chip factory only admits basic test method.
Basic test method. Put two chips A and B on the testbed, begin
the mutual test

the test report is “good” or “bad”

A

B good?

B

A bad?

Assumption. The report from good chip is always correct, but the
report from bad chip is non-deterministic (probably wrong)

32 / 100

Analysis of Test Report

A’s report B’s report Conclusion
B is good A is good A,B are both good or bad
B is good A is bad at least one is bad
B is bad A is good at least one is bad
B is bad A is bad at least one is bad

33 / 100

Problem of Chip Test

Input. n chips, #(good)−#(bad) ≥ 1

Question. Devise a test method to choose one good chip from n
chips
Requirement. The number of mutual tests is minimum

Starting point. Given a chip A, how to check if A is good or bad
Method. Using other n− 1 chip to test A.

Idea: utilize the odevity of n

34 / 100

Problem of Chip Test

Input. n chips, #(good)−#(bad) ≥ 1

Question. Devise a test method to choose one good chip from n
chips
Requirement. The number of mutual tests is minimum

Starting point. Given a chip A, how to check if A is good or bad
Method. Using other n− 1 chip to test A.

Idea: utilize the odevity of n

34 / 100

Case 1: n is Odd

Example. n = 7, #(good chips) ≥ 4.
A is good ⇔ at least 3 among 6 reports “good”
A is bad ⇔ at least 4 among 6 reports “bad”

Generalize to n is odd, #(good chips) ≥ (n+ 1)/2.
A is good: ⇔ at least (n− 1)/2 reports “good”
A is bad: ⇔ at least (n+ 1)/2 reports “bad”

Key observation. The test result is of if and only if flavor. Thus, it
constitutes a necessary and sufficient condition.
Criteria: in n− 1 reports

at least one half reports “good” ⇒ A is good
more than one half reports “bad” ⇒ A is bad

35 / 100

Case 2: n is Even

Example. n = 8, #(good chips) ≥ 5.
A is good ⇔ at least 4 from 7 report “good”
A is bad ⇔ at least 5 from 7 report “bad”

Generalize to n is even, #(good chips) ≥ n/2 + 1.
A is good ⇔ at least n/2 report “good”
A is bad ⇔ at least n/2 + 1 report “bad”

Key observation. The test result is also of if and only if flavor.
Thus, it constitutes a necessary and sufficient condition.
Criteria: in n− 1 reports

at least one half reports “good” ⇒ A is good
more than one half reports “bad” ⇒ A is bad

36 / 100

Brute Force Algorithm

Test method. Randomly pick a chip, apply the aforementioned
test. If it is good, then the test is over. Else, discard it and
randomly pick another chip from the rest, until get a good chip.

correctness: #(good chips) is always more than half.

Time complexity
1-st round: random one is bad, at most n− 1 time tests
2-rd round: random one is bad, at most n− 2 time tests
. . .

i-th round: random one is bad, at most n− i time tests

Nice discovery by [2020 江锴杰]: in i > 1 round, we can
randomly discard one chip then test ; requiring at most
n− 1− 2i time tests

The complexity in the worst-case is Θ(n2)

37 / 100

Brute Force Algorithm

Test method. Randomly pick a chip, apply the aforementioned
test. If it is good, then the test is over. Else, discard it and
randomly pick another chip from the rest, until get a good chip.

correctness: #(good chips) is always more than half.

Time complexity
1-st round: random one is bad, at most n− 1 time tests
2-rd round: random one is bad, at most n− 2 time tests
. . .

i-th round: random one is bad, at most n− i time tests

Nice discovery by [2020 江锴杰]: in i > 1 round, we can
randomly discard one chip then test ; requiring at most
n− 1− 2i time tests

The complexity in the worst-case is Θ(n2)

37 / 100

Divide-and-Conquer

Assume n is even, divide n chips into two groups and begin mutual
test; the rest chips form a subproblem and begin the next round
test

Test-and-Elimination rules
“good, good” ; pick a random one into the next round
other cases ; discard them all

The end condition of recursion: n ≤ 3

3 chips: one test suffices (think why? retain the same
property as the original problem)

1 “good, good”: randomly pick one and output it
2 “good, bad”: output the rest one
3 “bad, bad”: output the rest one

1 or 2 chips: both are good, no more test is needed

38 / 100

Divide-and-Conquer

Assume n is even, divide n chips into two groups and begin mutual
test; the rest chips form a subproblem and begin the next round
test
Test-and-Elimination rules

“good, good” ; pick a random one into the next round
other cases ; discard them all

The end condition of recursion: n ≤ 3

3 chips: one test suffices (think why? retain the same
property as the original problem)

1 “good, good”: randomly pick one and output it
2 “good, bad”: output the rest one
3 “bad, bad”: output the rest one

1 or 2 chips: both are good, no more test is needed

38 / 100

Divide-and-Conquer

Assume n is even, divide n chips into two groups and begin mutual
test; the rest chips form a subproblem and begin the next round
test
Test-and-Elimination rules

“good, good” ; pick a random one into the next round
other cases ; discard them all

The end condition of recursion: n ≤ 3

3 chips: one test suffices (think why? retain the same
property as the original problem)

1 “good, good”: randomly pick one and output it
2 “good, bad”: output the rest one
3 “bad, bad”: output the rest one

1 or 2 chips: both are good, no more test is needed

38 / 100

Correctness of Divide-and-Conquer Algorithm

Claim. When n is even, after one round of test, in the rest chips,
#(good chips) - #(bad chips) ≥ 1

Proof. Consider the following three cases:
1 Both are good (i groups) ; keep a random one
2 One is good, one is bad (j groups) ; discard them all
3 Both are bad (k groups) ; keep a random one or discard

them all
After one round test, #(good chips) = i, #(bad chips) ≤ k{

2i+ 2j + 2k = n #(chips) before test
2i+ j > 2k + j #(good chips) > #(bad chips)

}
⇒ i > k

39 / 100

Adjust when n is Odd
When n is odd, there would one chip left without group member.

Input good good good good bad bad ?

Group good good good good bad bad ?

Case 1 good good bad good3

Case 2 good good bad bad7

Adjustment. When n is odd, add one-round direct test for the
ungrouped chip

if it is good, the algorithm is over
else, discard it and enter into the next round (since n− 1
chips satisfying original property)

40 / 100

Pseudocode

Algorithm 8: ChipTest(n)
1: if n = 3 then //smallest case
2: randomly pick 2 chips;
3: if both are good then return a random one;
4: else return the rest one;
5: end
6: if n =2 or 1 then return a random one;
7:
8: divide into ⌊n/2⌋ groups; // adjust when n is odd
9: for i = 1 to ⌊n/2⌋ do

10: if both are good then keep a random one;
11: else discard both of them;
12: end
13: n← #(rest chips);
14: ChipTest(n);

41 / 100

Complexity Analysis

For input size n, after each round test, the number of chips
reduces at least by half

#(test) (include addition adjustment when n is odd): Θ(n)

Recurrence relation

W (n) = W (n/2) + Θ(n)
W (3) = 1,W (2) = W (1) = 0

}
⇒W (n) = Θ(n)

Summary of Divide-and-Conquer chip test algorithm
Adjustment ; guarantee the subproblem is of the same type
as the original problem
branching factor a = 1 & dividing-merging cost f(n) = Θ(n)
; ensure remarkable efficiency improvement over brute-force
algorithm

42 / 100

Outline

1 Introduction of Divide-and-Conquer

2 QuickSort

3 Chip Test

4 Selection Problem
Selecting Max and Min
Selecting the Second Largest
General Selection Problem

5 Closest Pair of Points

43 / 100

Outline

1 Introduction of Divide-and-Conquer

2 QuickSort

3 Chip Test

4 Selection Problem
Selecting Max and Min
Selecting the Second Largest
General Selection Problem

5 Closest Pair of Points

44 / 100

General Selection Problem

Selection. Given n elements from a totally ordered universe S, find
k-th smallest.

Minimum: k = 1 min element
Maximum: k = n max element
Median: k = ⌊(n+ 1)/2⌋

n is odd, the median is unique, k = (n+ 1)/2
n is even, the median has two choices: n/2 and n/2 + 1,
typically we choose k = n/2

Known results
O(n) compares for min or max.
Naive algorithms for general selection: O(n logn) compares
by sorting, and O(n log k) compares with a binary heap.

Applications. order statistics; find the “top k”; bottleneck paths
Q. Can we accomplish general selection with O(n) compares?
A. Yes! Selection is easier than sorting.

45 / 100

About Median

Median of the list of numbers is its 50th percentile: half the
numbers are larger than it, and half are smaller.

Example. The median of [45, 1, 10, 30, 25] is 25.
Meaning of median. Summarize a set of numbers by a single,
typical value.

The mean or average is also very commonly used for this
purpose.
But, median is in a sense more typical

always one of the data values, unlike the mean
less sensitive to outliers.

Counterexample. The median of hundreds 1’s is 1, as is mean.
However, if just one of these numbers gets corrupted to 10000, the
mean shoots above 100, while the median is unaffected with large
probability.

46 / 100

Selecting Max

Algorithm. Sequential compare

1 8 4 17 3 12

1

max
i = 1

8

max
i = 2

8

max
i = 2

17

max
i = 4

17

max
i = 4

17

max
i = 4

Output. max = 17, i = 4

Worst-case complexity. W (n) = n− 1

47 / 100

Selecting Max

Algorithm. Sequential compare

1 8 4 17 3 12

1

max
i = 1

8

max
i = 2

8

max
i = 2

17

max
i = 4

17

max
i = 4

17

max
i = 4

Output. max = 17, i = 4

Worst-case complexity. W (n) = n− 1

47 / 100

Selecting Max

Algorithm. Sequential compare

1 8 4 17 3 12

1

max
i = 1

8

max
i = 2

8

max
i = 2

17

max
i = 4

17

max
i = 4

17

max
i = 4

Output. max = 17, i = 4

Worst-case complexity. W (n) = n− 1

47 / 100

Selecting Max

Algorithm. Sequential compare

1 8 4 17 3 12

1

max
i = 1

8

max
i = 2

8

max
i = 2

17

max
i = 4

17

max
i = 4

17

max
i = 4

Output. max = 17, i = 4

Worst-case complexity. W (n) = n− 1

47 / 100

Selecting Max

Algorithm. Sequential compare

1 8 4 17 3 12

1

max
i = 1

8

max
i = 2

8

max
i = 2

17

max
i = 4

17

max
i = 4

17

max
i = 4

Output. max = 17, i = 4

Worst-case complexity. W (n) = n− 1

47 / 100

Selecting Max

Algorithm. Sequential compare

1 8 4 17 3 12

1

max
i = 1

8

max
i = 2

8

max
i = 2

17

max
i = 4

17

max
i = 4

17

max
i = 4

Output. max = 17, i = 4

Worst-case complexity. W (n) = n− 1

47 / 100

Pseudocode

Algorithm 9: SelectMax(A,n)
Input: A[n]
Output: max, j

1: max← A[1];
2: j ← 1;
3: for i← 2 to n do
4: if max < A[i] then
5: max← A[i];
6: j ← i;
7: end
8: end
9: return max, j

48 / 100

Selecting Max and Min

Naive Algorithm
1 Sequential compare, first choose max and remove it
2 Then choose min in the left list, using the same algorithm

but retain smaller element after each compare.

Worst-case time complexity

W (n) = n− 1 + n− 2 = 2n− 3

49 / 100

Selecting Max and Min

Naive Algorithm
1 Sequential compare, first choose max and remove it
2 Then choose min in the left list, using the same algorithm

but retain smaller element after each compare.

Worst-case time complexity

W (n) = n− 1 + n− 2 = 2n− 3

49 / 100

Grouping Algorithm

Idea. Split list into higher list and lower list.

group
1

group
2

.
group
⌊n/2⌋

large large large large large

small small small small small

extra

find max

find min

50 / 100

Grouping Algorithm

Idea. Split list into higher list and lower list.

group
1

group
2

.
group
⌊n/2⌋

large large large large large

small small small small small

extra

find max

find min

50 / 100

Grouping Algorithm

Idea. Split list into higher list and lower list.

group
1

group
2

.
group
⌊n/2⌋

large large large large large

small small small small small

extra

find max

find min

50 / 100

Pseudocode of Select Max and Min

Algorithm 10: FindMaxMin(A,n)
Input: unsorted A[n]
Output: max, min

1: divide n elements into ⌊n/2⌋ groups;
2: compare two elements in each group, obtain ⌊n/2⌋ smaller

and ⌊n/2⌋ larger;
3: find max in ⌊n/2⌋ larger elements and the extra element;
4: find min in ⌊n/2⌋ smaller elements and the extra element;

Summing it up, W (n) = 3⌊n/2⌋
Group inside compare: ⌊n/2⌋
When n is even: select max: n/2− 1, select min: n/2− 1

When n is odd: select max: (n− 1)/2 + 1− 1, select min:
(n− 1)/2 + 1− 1

51 / 100

Divide-and-Conquer Strategy

Q. Can we make this algorithm recursive on n?
A. Yes, but not optimal. Since selecting min in higher list (resp.
selecting max in lower list) is a waste.

How to solve FindMinMax via divide-and-conquer?
1 Divide A into left halve A1 and right halve A2

2 Recursively select max1 and min1 in A1

3 Recursively select max2 and min2 in A2

4 max← max{max1,max2}
5 min← min{min1,min2}

[2020 游泓慧] This recursive algorithm can be made itera-
tively like MergeSort.

52 / 100

Divide-and-Conquer Strategy

Q. Can we make this algorithm recursive on n?
A. Yes, but not optimal. Since selecting min in higher list (resp.
selecting max in lower list) is a waste.

How to solve FindMinMax via divide-and-conquer?

1 Divide A into left halve A1 and right halve A2

2 Recursively select max1 and min1 in A1

3 Recursively select max2 and min2 in A2

4 max← max{max1,max2}
5 min← min{min1,min2}

[2020 游泓慧] This recursive algorithm can be made itera-
tively like MergeSort.

52 / 100

Divide-and-Conquer Strategy

Q. Can we make this algorithm recursive on n?
A. Yes, but not optimal. Since selecting min in higher list (resp.
selecting max in lower list) is a waste.

How to solve FindMinMax via divide-and-conquer?
1 Divide A into left halve A1 and right halve A2

2 Recursively select max1 and min1 in A1

3 Recursively select max2 and min2 in A2

4 max← max{max1,max2}
5 min← min{min1,min2}

[2020 游泓慧] This recursive algorithm can be made itera-
tively like MergeSort.

52 / 100

Divide-and-Conquer Strategy

Q. Can we make this algorithm recursive on n?
A. Yes, but not optimal. Since selecting min in higher list (resp.
selecting max in lower list) is a waste.

How to solve FindMinMax via divide-and-conquer?
1 Divide A into left halve A1 and right halve A2

2 Recursively select max1 and min1 in A1

3 Recursively select max2 and min2 in A2

4 max← max{max1,max2}
5 min← min{min1,min2}

[2020 游泓慧] This recursive algorithm can be made itera-
tively like MergeSort.

52 / 100

Worse-Case Complexity

Assume n = 2k, the recurrence relation of W (n) is as below:{
W (n) = 2W (n/2) + 2

W (2) = 1

Solving for the exact value via substitute-then-iterate method:

W (2k) =2W (2k−1) + 2

=2(2W (2k−2) + 2) + 2

=22W (2k−2) + 22 + 2

=2iW (2k−i) + 2i + · · ·+ 2

The right side reach the initial value when i = k − 1, the
summation is:

2k−1 + (2k−1 + · · ·+ 22 + 2) = 3 · 2k−1 − 2 = 3n/2− 2

53 / 100

Summary

Select Max. Sequentially compare, requires at most n− 1 compares

Select Max and Min. (worst-case)
Naive algorithm: 2n− 3

Grouping algorithm: 3⌊n/2⌋
Divide-and-Conquer: 3n/2− 2

It can be proved that grouping algorithm and divide-and-
conquer algorithm are optimal for SelectMinMax, achieving
the lower bound

54 / 100

Outline

1 Introduction of Divide-and-Conquer

2 QuickSort

3 Chip Test

4 Selection Problem
Selecting Max and Min
Selecting the Second Largest
General Selection Problem

5 Closest Pair of Points

55 / 100

Selecting the Second Largest

Input. A[n]

Output. The second largest max′

Naive algorithm: sequential compare
1 select max from A[n] via sequential compare
2 select max′ from A[n]\max, which is exactly the second

largest

Time complexity: W (n) = (n− 1) + (n− 2) = 2n− 3

56 / 100

Selecting the Second Largest

Input. A[n]

Output. The second largest max′

Naive algorithm: sequential compare
1 select max from A[n] via sequential compare
2 select max′ from A[n]\max, which is exactly the second

largest

Time complexity: W (n) = (n− 1) + (n− 2) = 2n− 3

56 / 100

Optimized Method

Observation. The sufficient and necessary condition to be the
second largest: only beaten by the largest
To determine the second largest element, we must know the
largest element first.

Idea. Trade space for time
Record the elements that are beaten by the largest element in
a set L along the way finding the largest
Selecting the largest element among the elements in L.

57 / 100

Optimized Method

Observation. The sufficient and necessary condition to be the
second largest: only beaten by the largest
To determine the second largest element, we must know the
largest element first.

Idea. Trade space for time
Record the elements that are beaten by the largest element in
a set L along the way finding the largest
Selecting the largest element among the elements in L.

57 / 100

Tournament Algorithm for Second Largest

1 Divide elements into groups of size 2

2 In each group, two elements compare, the larger one goes to
the next level, and (only) records the beaten element in its list.

3 Repeat the above steps until there is only one element left,
a.k.a. max

4 Select the largest element form the list of max, a.k.a. max′

The name comes from single-elimination tournament: players
play in two-sided matches, and the winner is promoted to the
next level up. The hierarchy continues until the final match
determines the ultimate winner. The tournament determines
the best player, but the player who was beaten in the final
match may not be the second best - he may be inferior to
other players the winner bested.

58 / 100

Pseudocode of SelectSecond

Algorithm 11: FindSecond(A,n)
Input: A[n]
Output: Second largest element max′

1: k ← n //number of elements;
2: divide k elements into ⌊k/2⌋ groups;
3: In each group, two elements compare to select larger;
4: record the loser into the list of winner;
5: if k is odd then k ← 1 + ⌊k/2⌋;
6: else k ← k/2;
7: if k > 1 then goto 2;
8: max← ultimate winner;
9: max′ ← max in the list of ultimate winner

line 2-4: one round match
line 5-6: compute the number of winners — ⌈k/2⌉
line 7: next round match

59 / 100

Demo of SelectSecond

1st round 5 3 6 7 2 1 4 8

3 6 1 4

2nd round 5 7 2 8

6
5

4
2

3rd round 7 8

4
2
7

60 / 100

Demo of SelectSecond

1st round 5 3 6 7 2 1 4 8

3 6 1 4

2nd round 5 7 2 8

6
5

4
2

3rd round 7 8

4
2
7

60 / 100

Complexity Analysis (1/3)

Proposition 1. Assume there are n elements, at most ⌈n/2i⌉
elements are left after i-th round match.

Proof. Carry mathematical induction over i:
Induction basis i = 1: divide into ⌊n/2⌋ groups, kick off
⌊n/2⌋ elements, the number of elements prompted to the
next level is

n− ⌊n/2⌋ = ⌈n/2⌉

Induction step: P (i)⇒ P (i+ 1). Assume the number of
elements after i-th match is at most ⌈n/2i⌉, then after
i+ 1-th match, the number of elements is

continuous rounding property⇒ ⌈⌈n/2i⌉/2⌉ = ⌈n/2i+1⌉

61 / 100

Complexity Analysis (2/3)

Proposition 2. max compares with ⌈logn⌉ elements

Proof. Assume max is selected after k round match. According to
Proposition 1, ⌈n/2k⌉ = 1.

if n = 2d for some d ∈ Z, then:

logn = ⌈logn⌉
k = d = ⌈logn⌉

else 2d < n < 2d+1 for some d ∈ Z, then

d < logn < d+ 1

k = d+ 1 = ⌈logn⌉

62 / 100

Complexity Analysis (3/3)

Phase 1: number of elements is n

number of compares = n− 1 ⇐ n− 1 elements are eliminated
(one compare kicks off one element)

Phase 2: number of elements is ⌈logn⌉, which is exactly the size
of winner’s list according to Proposition 2

number of compares = ⌈logn⌉ − 1 ⇐ sequential compare or
tournament algorithm (⌈logn⌉ − 1 elements are eliminated)

The overall time complexity:

W (n) = n− 1 + ⌈logn⌉ − 1

= n+ ⌈logn⌉ − 2

63 / 100

Summary of Finding Second Max

Find the second max
Naive algorithm (invoking FindMax twice) 2n− 3

Tournament Algorithm: n+ ⌈logn⌉ − 2

main trick: trade space for efficiency

64 / 100

Outline

1 Introduction of Divide-and-Conquer

2 QuickSort

3 Chip Test

4 Selection Problem
Selecting Max and Min
Selecting the Second Largest
General Selection Problem

5 Closest Pair of Points

65 / 100

Motivation of General Selection Problem

Computing the median has wide applications
Naive algorithm: sort-then-find ⇒ W (n) = n logn
Ideally we expect linear complexity.
We have reason to be hopeful. Sorting does far more than we
really need — we do not care about the relative ordering of
the rest of them.

When looking for a recursive algorithm, it is paradoxically more
easier to work with a more general version of the problem – for the
simple reason that this gives a more powerful step to recurse upon.

It also generalizes find the second largest.

66 / 100

General Selection Problem

Problem. Select k-th smallest
Input. list A[n], integer k ∈ [n]

Output. the k-th smallest

Example 1. A = {3, 4, 8, 2, 5, 9, 10}, k = 4, solution = 5

Example 2. Statistical data set S, |S| = n, select the median,
k = ⌈n/2⌉

67 / 100

Naive Algorithms

Algorithm 1
invoke algorithm SelectMin k times
time complexity is: O(kn)

Algorithm 2
sort, then output the k-smallest number
time complexity is: O(n logn)

68 / 100

Naive Algorithms

Algorithm 1
invoke algorithm SelectMin k times
time complexity is: O(kn)

Algorithm 2
sort, then output the k-smallest number
time complexity is: O(n logn)

68 / 100

Divide-and-Conquer: QuickSelect

Assume n elements are distinct, the idea is 3-way partition:

Using some m∗ as pivot to split S so that m∗ is in place,
smaller elements in left subarray S1 and larger elements in
right subarray S2

1 If k ≤ |S1|, then find the k-smallest in S1

2 If k = |S1|+ 1, then m∗ is the k-smallest
3 If k > |S1|+ 1, then find the k − |S1| − 1-smallest in S2

The efficiency is determined by the size of subproblems.

Question. How to choose m∗ to control the size of subproblems?
Ideal case: find the exact median, but this means we have to solve
a problem of the same size first
Real case: use a quasi-median instead — the median of subarrary
median

69 / 100

Divide-and-Conquer: QuickSelect

Assume n elements are distinct, the idea is 3-way partition:
Using some m∗ as pivot to split S so that m∗ is in place,
smaller elements in left subarray S1 and larger elements in
right subarray S2

1 If k ≤ |S1|, then find the k-smallest in S1

2 If k = |S1|+ 1, then m∗ is the k-smallest
3 If k > |S1|+ 1, then find the k − |S1| − 1-smallest in S2

The efficiency is determined by the size of subproblems.

Question. How to choose m∗ to control the size of subproblems?
Ideal case: find the exact median, but this means we have to solve
a problem of the same size first
Real case: use a quasi-median instead — the median of subarrary
median

69 / 100

Divide-and-Conquer: QuickSelect

Assume n elements are distinct, the idea is 3-way partition:
Using some m∗ as pivot to split S so that m∗ is in place,
smaller elements in left subarray S1 and larger elements in
right subarray S2

1 If k ≤ |S1|, then find the k-smallest in S1

2 If k = |S1|+ 1, then m∗ is the k-smallest
3 If k > |S1|+ 1, then find the k − |S1| − 1-smallest in S2

The efficiency is determined by the size of subproblems.

Question. How to choose m∗ to control the size of subproblems?
Ideal case: find the exact median, but this means we have to solve
a problem of the same size first
Real case: use a quasi-median instead — the median of subarrary
median

69 / 100

Divide-and-Conquer: QuickSelect

Assume n elements are distinct, the idea is 3-way partition:
Using some m∗ as pivot to split S so that m∗ is in place,
smaller elements in left subarray S1 and larger elements in
right subarray S2

1 If k ≤ |S1|, then find the k-smallest in S1

2 If k = |S1|+ 1, then m∗ is the k-smallest
3 If k > |S1|+ 1, then find the k − |S1| − 1-smallest in S2

The efficiency is determined by the size of subproblems.

Question. How to choose m∗ to control the size of subproblems?

Ideal case: find the exact median, but this means we have to solve
a problem of the same size first
Real case: use a quasi-median instead — the median of subarrary
median

69 / 100

Divide-and-Conquer: QuickSelect

Assume n elements are distinct, the idea is 3-way partition:
Using some m∗ as pivot to split S so that m∗ is in place,
smaller elements in left subarray S1 and larger elements in
right subarray S2

1 If k ≤ |S1|, then find the k-smallest in S1

2 If k = |S1|+ 1, then m∗ is the k-smallest
3 If k > |S1|+ 1, then find the k − |S1| − 1-smallest in S2

The efficiency is determined by the size of subproblems.

Question. How to choose m∗ to control the size of subproblems?
Ideal case: find the exact median, but this means we have to solve
a problem of the same size first

Real case: use a quasi-median instead — the median of subarrary
median

69 / 100

Divide-and-Conquer: QuickSelect

Assume n elements are distinct, the idea is 3-way partition:
Using some m∗ as pivot to split S so that m∗ is in place,
smaller elements in left subarray S1 and larger elements in
right subarray S2

1 If k ≤ |S1|, then find the k-smallest in S1

2 If k = |S1|+ 1, then m∗ is the k-smallest
3 If k > |S1|+ 1, then find the k − |S1| − 1-smallest in S2

The efficiency is determined by the size of subproblems.

Question. How to choose m∗ to control the size of subproblems?
Ideal case: find the exact median, but this means we have to solve
a problem of the same size first
Real case: use a quasi-median instead — the median of subarrary
median

69 / 100

The Selection of m∗ and Dividing

Divide 1 2 ⌊n/5⌋

.

M m∗

1 sort each group in descending order

2 find the median of median, then re-organize the group to
place m∗ in the middle

70 / 100

The Selection of m∗ and Dividing

Divide 1 2 ⌊n/5⌋

.M m∗

1 sort each group in descending order
2 find the median of median, then re-organize the group to

place m∗ in the middle

70 / 100

Divide 1 2 ⌊n/5⌋

.

A zone: require compares with m∗

B zone: larger than m∗

C zone: smaller than m∗

D zone: require compares with m∗

71 / 100

Demo: n = 15, k = 6

8 2 3 5 7 6 11 14 1 9 13 10 4 12 15

8 14 15

7 11 13

5 9 12M m∗ = 9

3 6 10

2 1 4

8 14 15

7 11 13

5 9 12

3 6 10

2 1 4

A B

C D

72 / 100

Divide to Subproblems

8 14 15

7 11 13

5 9 12

3 6 10

2 1 4

S1 S2

subproblem: {8, 7, 5, 3, 2, 6, 1, 4}
size of subproblem = 8, k = 6

73 / 100

Pseudocode of QuickSelect

Algorithm 12: QuickSelect(A[n], k)

1: divide elements in A into groups of size 5, there are totally
m = ⌈n/5⌉ groups;

2: sort each group and place the medians into M ;
3: m∗ ← QuickSelect(M, ⌈|M |/2⌉) //split S into A, B, C, D;
4: For elements in A and D, record the ones smaller than m∗

into S1, the ones larger than m∗ into S2;
5: S1 ← S1 ∪ C, S2 ← S2 ∪B;
6: if k = |S1|+ 1 then output m∗;
7: else if k ≤ |S1| then
8: QuickSelect(S1, k);
9: else QuickSelect(S2, k − |S1| − 1);

line 4-5: split
line 7-9: recursively solve subproblems

74 / 100

Complexity Analysis

Each round of QuickSelect algorithm consists of two recursive calls
of QuickSelect

1 select median from median M as pivot for dividing
2 the real subproblem

The overall complexity of the algorithm is determined by the
quality of dividing

75 / 100

.

r r + 1

A
B

C
D

unbalanced divide ; bad complexity

We consider an extreme case: elements in A zone and D zone go
to the same side.

n = 5(2r + 1), |A| = |D| = 2r

the size of subproblems is at most: 2r + 2r + 3r + 2 = 7r + 2

76 / 100

Estimation of the Size of Subproblems

Assume n = 5(2r + 1), |A| = |D| = 2r

r =
n/5− 1

2
=

n

10
− 1

2

The size of subproblem after dividing is at most:

7r + 2 = 7

(
n

10
− 1

2

)
+ 2

=
7n

10
− 3

2
<

7n

10

77 / 100

Recurrence Relation for Worst-Case Complexity

Worse-case complexity W (n)

line 2: Θ(n) //select median among each 5 elements
(constant time), form M

line 3: W (n/5) //find median m∗ of M
line 4: Θ(n) //divide S using m∗ (only need to compare A
and D)
line 8-9: W (7n/10) //recursive call to the subproblem

The recurrence relation is:

W (n) ≤W (n/5) +W (7n/10) + Θ(n)

78 / 100

Solving via Recurrence Tree

W (n) ≤W (n/5) +W (7n/10) + Θ(n)

cn

0.9cn

0.81cn

cn

cn
5

7cn
10

cn
25

7cn
50

7cn
50

49cn
100

.

the depth of tree is Θ(logn) ⇒ the number of leaf nodes is
Θ(n); the cost of solving smallest problem is constant ⇒ the
cost of all smallest problem is Θ(n)

W (n) ≤ cn(1 + 0.9 + 0.92 + . . .) + Θ(n) = Θ(n)

79 / 100

Discussion

Q. Why we have to divide the elements into groups of size 5? Can
we choose the group size as 3 or 7?

Analysis. The group size will affect the overall complexity. Let t be
the group size.

1 The cost of selecting m∗ is related to |M | = n/t. The larger
is t, the smaller is |M |.

2 The size of subproblem after dividing is related to t. The
larger is t, the larger is |Si|.

We have to hit the sweet balance.
80 / 100

Case Study: t = 3

.

r r + 1

n = 3(2r + 1), r = (n/3− 1)/2 = n/6− 1/2

The subproblem size is at most: 4r + 1 = 4n/6− 1

Recurrence relation of worst-case complexity is:

W (n) = W (n/3) +W (4n/6) + cn

Solving by recurrence tree ⇒ W (n) = Θ(n logn)

81 / 100

Summary

Crux. When |M |+ |Si| < n, then the total cost on the inner
nodes of recurrence tree forms geometric series with common
ratio less than 1. W (n) is Θ(n) only in this case.

Selecting max or min
Naive sequential compare: W (n) = n− 1

Selecting max and min
grouping algorithm: W (n) = 3⌊n/2⌋
divide-and-conquer: W (n) = 3n/2− 2

Selecting the second largest: the tournament algorithm

W (n) = n+ ⌈logn⌉ − 2

General selecting problem: divide-and-conquer algorithm

W (n) = Θ(n)(≈ 44n)

82 / 100

Follow-up Work on Linear-time Selection (Median of Medians)

Proposition. [Blum-Floyd-Pratt-Rivest-Tarjan 1973] There exists a
compare-based selection algorithm whose W (n) = O(n).

Theory.
Optimized version of BFPRT: ≤ 5.4305n compares.
Best known upper bound [Dor-Zwick 1995]: ≤ 2.95n.
Best known lower bound [Dor-Zwick 1999]: ≥ (2 + ϵ)n.

Practice.
Constant and overhead (currently) too large to be useful.

83 / 100

Application of Selecting Median: Optimal Pipeline Design

Problem. Assume there are n oil wells, the task is building a
pipeline system to connect n oil wells. The pipeline system consists
of a horizontal main pipeline, each oil well connects to the main
pipeline via a vertical pipeline.
Optimization Goal. How to choose the position of main pipeline to
minimize the total length of vertical pipelines?

84 / 100

Optimal Solution: the Median of Y Coordinates

The main pipeline is horizontal ⇒ optimal solution is independent
of the distribution of X coordinates

If the median is unique, then select it; else, choose any median of
the two is fine (any horizontal line between the medians is also
fine).

yn...
yn/2+1

y
yn/2

y2

y1

move down ∆
cross k oil well

each vertical pipeline
increases ∆

each vertical pipeline
increases/decreases at most ∆

each vertical pipeline
decreases length ∆

85 / 100

Optimal Solution: the Median of Y Coordinates

The main pipeline is horizontal ⇒ optimal solution is independent
of the distribution of X coordinates
If the median is unique, then select it; else, choose any median of
the two is fine (any horizontal line between the medians is also
fine).

yn...
yn/2+1

y
yn/2

y2

y1

move down ∆
cross k oil well

each vertical pipeline
increases ∆

each vertical pipeline
increases/decreases at most ∆

each vertical pipeline
decreases length ∆

85 / 100

Optimal Solution: the Median of Y Coordinates

The main pipeline is horizontal ⇒ optimal solution is independent
of the distribution of X coordinates
If the median is unique, then select it; else, choose any median of
the two is fine (any horizontal line between the medians is also
fine).

yn...
yn/2+1

y
yn/2

y2

y1

move down ∆
cross k oil well

each vertical pipeline
increases ∆

each vertical pipeline
increases/decreases at most ∆

each vertical pipeline
decreases length ∆

85 / 100

Optimal Solution: the Median of Y Coordinates

The main pipeline is horizontal ⇒ optimal solution is independent
of the distribution of X coordinates
If the median is unique, then select it; else, choose any median of
the two is fine (any horizontal line between the medians is also
fine).

yn...
yn/2+1

y
yn/2

y2

y1

move down ∆
cross k oil well

each vertical pipeline
increases ∆

each vertical pipeline
increases/decreases at most ∆

each vertical pipeline
decreases length ∆

85 / 100

Analysis

We first consider the effect of moving down:

if n is odd: the median is unique (number of wells that is
above/below of median n′ = (n− 1)/2)

variation: +(n′+1)∆, at most ±k∆, −(n′− k)∆, 1 ≤ k ≤ n′

sum of variation = ∆± k∆+ k∆ > 0

if n is even: w.l.o.g. (above n′ = n/2, below n′ = n/2)
variation: +n′∆, at most ±k∆, −(n′ − k)∆, 1 ≤ k ≤ n′

sum of variation = ±k∆+ k∆ ≥ 0

In summary, the total length of vertical pipelines increases if the
main pipeline moving down from median.

The same analysis also applies to the case of moving up, with the
same effect.

86 / 100

Analysis

We first consider the effect of moving down:

if n is odd: the median is unique (number of wells that is
above/below of median n′ = (n− 1)/2)

variation: +(n′+1)∆, at most ±k∆, −(n′− k)∆, 1 ≤ k ≤ n′

sum of variation = ∆± k∆+ k∆ > 0

if n is even: w.l.o.g. (above n′ = n/2, below n′ = n/2)
variation: +n′∆, at most ±k∆, −(n′ − k)∆, 1 ≤ k ≤ n′

sum of variation = ±k∆+ k∆ ≥ 0

In summary, the total length of vertical pipelines increases if the
main pipeline moving down from median.

The same analysis also applies to the case of moving up, with the
same effect.

86 / 100

Analysis

We first consider the effect of moving down:

if n is odd: the median is unique (number of wells that is
above/below of median n′ = (n− 1)/2)

variation: +(n′+1)∆, at most ±k∆, −(n′− k)∆, 1 ≤ k ≤ n′

sum of variation = ∆± k∆+ k∆ > 0

if n is even: w.l.o.g. (above n′ = n/2, below n′ = n/2)
variation: +n′∆, at most ±k∆, −(n′ − k)∆, 1 ≤ k ≤ n′

sum of variation = ±k∆+ k∆ ≥ 0

In summary, the total length of vertical pipelines increases if the
main pipeline moving down from median.

The same analysis also applies to the case of moving up, with the
same effect.

86 / 100

Analysis

We first consider the effect of moving down:

if n is odd: the median is unique (number of wells that is
above/below of median n′ = (n− 1)/2)

variation: +(n′+1)∆, at most ±k∆, −(n′− k)∆, 1 ≤ k ≤ n′

sum of variation = ∆± k∆+ k∆ > 0

if n is even: w.l.o.g. (above n′ = n/2, below n′ = n/2)
variation: +n′∆, at most ±k∆, −(n′ − k)∆, 1 ≤ k ≤ n′

sum of variation = ±k∆+ k∆ ≥ 0

In summary, the total length of vertical pipelines increases if the
main pipeline moving down from median.

The same analysis also applies to the case of moving up, with the
same effect.

86 / 100

Analysis

We first consider the effect of moving down:

if n is odd: the median is unique (number of wells that is
above/below of median n′ = (n− 1)/2)

variation: +(n′+1)∆, at most ±k∆, −(n′− k)∆, 1 ≤ k ≤ n′

sum of variation = ∆± k∆+ k∆ > 0

if n is even: w.l.o.g. (above n′ = n/2, below n′ = n/2)
variation: +n′∆, at most ±k∆, −(n′ − k)∆, 1 ≤ k ≤ n′

sum of variation = ±k∆+ k∆ ≥ 0

In summary, the total length of vertical pipelines increases if the
main pipeline moving down from median.

The same analysis also applies to the case of moving up, with the
same effect.

86 / 100

Outline

1 Introduction of Divide-and-Conquer

2 QuickSort

3 Chip Test

4 Selection Problem
Selecting Max and Min
Selecting the Second Largest
General Selection Problem

5 Closest Pair of Points

87 / 100

Finding the Closest Pair of Points

Input. Given n > 1 points in the plane P , find a pair of points
with smallest Euclidean distance between them.

Fundamental geometric primitive.
Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.
Special case of nearest neighbor, Euclidean MST, Voronoi︸ ︷︷ ︸

fast closest pair inspired fast algorithms for these problems

88 / 100

Finding the Closest Pair of Points

Input. Given n > 1 points in the plane P , find a pair of points
with smallest Euclidean distance between them.

Fundamental geometric primitive.
Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.
Special case of nearest neighbor, Euclidean MST, Voronoi︸ ︷︷ ︸

fast closest pair inspired fast algorithms for these problems

88 / 100

Finding the Closest Pair of Points

Input. Given n > 1 points in the plane P , find a pair of points
with smallest Euclidean distance between them.

Fundamental geometric primitive.
Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.
Special case of nearest neighbor, Euclidean MST, Voronoi︸ ︷︷ ︸

fast closest pair inspired fast algorithms for these problems

88 / 100

Attempts

Brute-force. Check all C2
n pairs with distance calculations ; time

complexity Θ(n2)

1d version. O(n logn) algorithms if points are on a line (sort then
compute and compare).

Non-degeneracy assumption. No two points have the same
x-coordinate or y-coordinate.

Θ(n2) complexity seems inevitable. Can we do better?

89 / 100

Attempts

Brute-force. Check all C2
n pairs with distance calculations ; time

complexity Θ(n2)

1d version. O(n logn) algorithms if points are on a line (sort then
compute and compare).

Non-degeneracy assumption. No two points have the same
x-coordinate or y-coordinate.

Θ(n2) complexity seems inevitable. Can we do better?

89 / 100

Attempts

Brute-force. Check all C2
n pairs with distance calculations ; time

complexity Θ(n2)

1d version. O(n logn) algorithms if points are on a line (sort then
compute and compare).

Non-degeneracy assumption. No two points have the same
x-coordinate or y-coordinate.

Θ(n2) complexity seems inevitable. Can we do better?

89 / 100

Attempts

Brute-force. Check all C2
n pairs with distance calculations ; time

complexity Θ(n2)

1d version. O(n logn) algorithms if points are on a line (sort then
compute and compare).

Non-degeneracy assumption. No two points have the same
x-coordinate or y-coordinate.

Θ(n2) complexity seems inevitable. Can we do better?

89 / 100

Divide-and-Conquer

Idea. Partition P into PL and PR of roughly the same size
Divide: draw vertical line l so that n/2 points on each side:
PL and PR

Conquer: find closest pair of points in each side recursively
Combine: find closest pair with one point in each side.
Return the closest one among 3 solutions.

90 / 100

Demo of Partition: n = 10

PL PRl

91 / 100

Pseudocode of MinDistance

Algorithm 13: MinDistance(P,X, Y)

Input: Points set P , coordinates set X and Y
Output: the closest pair of points and distance

1: if |P | < 3 then direct compute;
2: sorted X and Y ;
3: draw midline l to partition P into PL and PR;
4: δL ← MinDistance(PL, XL, YL);
5: δR ← MinDistance(PR, XR, YR);
6: δ = min(δL, δR); // δL, δR are solutions to subproblems ;
7: check nodes within certain distance to l;
8: if distance is smaller than δ then update δ as this value;

92 / 100

The combine step seems again require Θ(n2).

Step 7 requires delicated desgin and analysis.

93 / 100

How to find closest pair with one point in each side?

Observation 1. Only need to consider points within δ of line l.

d

δ

2δ

d =
√
(δ/2)2 + (2δ/3)2

=
√
δ2/4 + 4δ2/9

=
√
25δ2/36 = 5δ/6

Observation 2. In each rectangles on the right side: # point ≤ 1

each point at most is required to compare with 6 points in the
opposite side (because there are at most 1 point in 1 cell)
checking one point requires constant time ; compare Θ(n)
points requires Θ(n) time

94 / 100

Treatment for Points Cross Midline
How to implement this idea? For a given point, how to find the

corresponding 6 points efficiently?

Sort points in 2δ-strip by their y-coordinate.
this sorted list can be derived from sorted Y in time Θ(n)
(think how?).

Then sequentially test:
1 selects neighbors of current point within δ vertical distance:

at most 7 upstairs, at most 7 downstairs
2 if its neighbor is on the same side, then skip; otherwise,

compute its distance to this neighbor
For one point, selection-then-calculation can be done in constant
time, totally Θ(n) for n points

Why not sort two δ-strips separately instead? Cause fix one
point at one side, it could be complicated to locate “the 6
neighbors” on the opposite side.

95 / 100

Treatment for Points Cross Midline
How to implement this idea? For a given point, how to find the

corresponding 6 points efficiently?
Sort points in 2δ-strip by their y-coordinate.

this sorted list can be derived from sorted Y in time Θ(n)
(think how?).

Then sequentially test:
1 selects neighbors of current point within δ vertical distance:

at most 7 upstairs, at most 7 downstairs
2 if its neighbor is on the same side, then skip; otherwise,

compute its distance to this neighbor
For one point, selection-then-calculation can be done in constant
time, totally Θ(n) for n points

Why not sort two δ-strips separately instead? Cause fix one
point at one side, it could be complicated to locate “the 6
neighbors” on the opposite side.

95 / 100

Treatment for Points Cross Midline
How to implement this idea? For a given point, how to find the

corresponding 6 points efficiently?
Sort points in 2δ-strip by their y-coordinate.

this sorted list can be derived from sorted Y in time Θ(n)
(think how?).

Then sequentially test:
1 selects neighbors of current point within δ vertical distance:

at most 7 upstairs, at most 7 downstairs
2 if its neighbor is on the same side, then skip; otherwise,

compute its distance to this neighbor

For one point, selection-then-calculation can be done in constant
time, totally Θ(n) for n points

Why not sort two δ-strips separately instead? Cause fix one
point at one side, it could be complicated to locate “the 6
neighbors” on the opposite side.

95 / 100

Treatment for Points Cross Midline
How to implement this idea? For a given point, how to find the

corresponding 6 points efficiently?
Sort points in 2δ-strip by their y-coordinate.

this sorted list can be derived from sorted Y in time Θ(n)
(think how?).

Then sequentially test:
1 selects neighbors of current point within δ vertical distance:

at most 7 upstairs, at most 7 downstairs
2 if its neighbor is on the same side, then skip; otherwise,

compute its distance to this neighbor
For one point, selection-then-calculation can be done in constant
time, totally Θ(n) for n points

Why not sort two δ-strips separately instead? Cause fix one
point at one side, it could be complicated to locate “the 6
neighbors” on the opposite side.

95 / 100

Treatment for Points Cross Midline
How to implement this idea? For a given point, how to find the

corresponding 6 points efficiently?
Sort points in 2δ-strip by their y-coordinate.

this sorted list can be derived from sorted Y in time Θ(n)
(think how?).

Then sequentially test:
1 selects neighbors of current point within δ vertical distance:

at most 7 upstairs, at most 7 downstairs
2 if its neighbor is on the same side, then skip; otherwise,

compute its distance to this neighbor
For one point, selection-then-calculation can be done in constant
time, totally Θ(n) for n points

Why not sort two δ-strips separately instead? Cause fix one
point at one side, it could be complicated to locate “the 6
neighbors” on the opposite side.

95 / 100

Complexity Analysis
step operation time complexity
1 smallest problem O(1)

2 sort X and Y Θ(n logn)
3 partition O(n)

4-5 subproblems 2W (n/2)

6 δ = min{δL, δR} O(1)

7 cross midline treatment Θ(n)

Why sorting X and Y is necessary?
sort X: partition P to PL and PR

sort Y : deal with the strip{
W (n) = 2W (n/2) + Θ(n logn)

W (n) = O(1), n ≤ 3

Applying master theorem (case 2), we have:

recursion tree⇒W (n) = Θ(n log2 n)
96 / 100

Recap

Compared with the brute-force algorithm, the complexity of
divide-and-conquer algorithm is much better.

Can we further improve it? Especially decrease the complexity of
sorting.

Original approach. Re-sort the coordinates of subproblems after
partition
Improved approach.

1 Preprocessing. sort X and Y before recursion
2 split sorted X and Y when partitioning, obtaining sorted XL,

YL for PL, and sorted XR, YR for PR

splitting X is simple: split by the median
splitting Y : according to the split result of X

When the size of original problem is n, splitting complexity is Θ(n)

sorting points from scratch each time ; sorting once and then
splitting

97 / 100

Recap

Compared with the brute-force algorithm, the complexity of
divide-and-conquer algorithm is much better.
Can we further improve it? Especially decrease the complexity of

sorting.

Original approach. Re-sort the coordinates of subproblems after
partition
Improved approach.

1 Preprocessing. sort X and Y before recursion
2 split sorted X and Y when partitioning, obtaining sorted XL,

YL for PL, and sorted XR, YR for PR

splitting X is simple: split by the median
splitting Y : according to the split result of X

When the size of original problem is n, splitting complexity is Θ(n)

sorting points from scratch each time ; sorting once and then
splitting

97 / 100

Recap

Compared with the brute-force algorithm, the complexity of
divide-and-conquer algorithm is much better.
Can we further improve it? Especially decrease the complexity of

sorting.
Original approach. Re-sort the coordinates of subproblems after
partition

Improved approach.
1 Preprocessing. sort X and Y before recursion
2 split sorted X and Y when partitioning, obtaining sorted XL,

YL for PL, and sorted XR, YR for PR

splitting X is simple: split by the median
splitting Y : according to the split result of X

When the size of original problem is n, splitting complexity is Θ(n)

sorting points from scratch each time ; sorting once and then
splitting

97 / 100

Recap

Compared with the brute-force algorithm, the complexity of
divide-and-conquer algorithm is much better.
Can we further improve it? Especially decrease the complexity of

sorting.
Original approach. Re-sort the coordinates of subproblems after
partition
Improved approach.

1 Preprocessing. sort X and Y before recursion
2 split sorted X and Y when partitioning, obtaining sorted XL,

YL for PL, and sorted XR, YR for PR

splitting X is simple: split by the median
splitting Y : according to the split result of X

When the size of original problem is n, splitting complexity is Θ(n)

sorting points from scratch each time ; sorting once and then
splitting

97 / 100

Recap

Compared with the brute-force algorithm, the complexity of
divide-and-conquer algorithm is much better.
Can we further improve it? Especially decrease the complexity of

sorting.
Original approach. Re-sort the coordinates of subproblems after
partition
Improved approach.

1 Preprocessing. sort X and Y before recursion
2 split sorted X and Y when partitioning, obtaining sorted XL,

YL for PL, and sorted XR, YR for PR

splitting X is simple: split by the median
splitting Y : according to the split result of X

When the size of original problem is n, splitting complexity is Θ(n)

sorting points from scratch each time ; sorting once and then
splitting

97 / 100

Details of Sorting and Splitting

Data structure. two lists X[n], Y [n], each element is a label i,
sorted in ascending order of x, y coordinates once
Splitting of X: simple, but additional trick is needed to facilitate
splitting of Y . Let n be the current size of problem

generate an indication map H of size n, H[i] = 0 indicates
point i in the left, H[i] = 1 indicates point in the right.
time complexity is Θ(n)

Splitting of Y : sequentially scanning Y [n]

if H[Y [i]] = 0, classify Y [i] to the left side, else classify it to
the right side, yielding sorted YL and YR.
time complexity is Θ(n)

98 / 100

Demo of Splitting in Recursion

p3

p4

p1

p2

Table: Input

P 1 2 3 4

x 0.5 2 −2 1

y 2 3 4 −1

Table: Preprocessing: sort

X 3 1 4 2

Y 4 1 2 3

Table: Splitting

XL 3 1

YL 1 3

Table: Splitting

XR 4 2

YR 4 2

99 / 100

Improved Divide-and-Conquer Algorithm

T (n) is the overall complexity, Θ(n logn) is the complexity of
global preprocessing, T ′(n) is the complexity of main recursive
algorithm,

T (n) = T ′(n) + Θ(n logn)
T ′(n) = 2T ′(n/2) + Θ(n)
T ′(n) = O(1) n ≤ 3

master theorem (case 2) ⇒ T ′(n) = Θ(n logn)

Putting all the above together, T (n) = Θ(n logn)

Lower bound. In quadratic decision tree model (compute the
Euclidean distance then compare), any algorithm for closest pair
(even in 1D) requires Θ(n logn) quadratic tests.

100 / 100

	Introduction of Divide-and-Conquer
	QuickSort
	Chip Test
	Selection Problem
	Selecting Max and Min
	Selecting the Second Largest
	General Selection Problem

	Closest Pair of Points

